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EXECUTIVE SUMMARY 
 
Recent developments on connected and automated vehicles (CAV) show that many companies, 
such as Tesla, Lyft, and Waymo, are substantially investing in the development of perception 
modules based on deep learning algorithms. However, deep learning algorithms are susceptible 
to adversarial attacks aimed at modifying the input of the neural network to induce a 
misclassification, which may compromise vehicle decision-making and, therefore, functional 
safety. 
 
The overall vision of this project is the development of a robust deep learning model which can 
be used for CAV resilient to adversarial attacks and, therefore, capable of satisfying more 
stringent system safety and performance requirements. More specifically, we leverage deep 
Bayes classifier and generative models to model the distributions for both clean data and 
adversarial data. We apply discriminative features as input to maintain the classification 
accuracy while introducing robustness. The main objective of this project is therefore to address 
the challenge by exploiting discriminative features and generative modeling to achieve higher 
resilience to particular type of cyber-attack known as adversarial attacks. To achieve such a 
goal, it is required to build intrinsic robustness into the deep learning model and not use any 
specific type of adversarial examples in the training, so that the robust model can be resistant to 
unseen adversarial examples during the testing. The training dataset should not be enlarged by 
simply injecting adversarial examples, which can avoid huge computation costs while deploying. 
The main activities for this project are summarized as follows: 
 

• Create a causal graph that incorporates certain latent variables to build relations 
between different causes for the formation of adversarial inputs.  

• Leverage Bayes’ rule and the causal graph to build a generative classifier. The classifier 
needs to fuse discriminative features from pre-trained discriminative classifiers as inputs, 
which can provide reasonable classification accuracy. 

• Use counterfactual metrics to evaluate the model causality. 
 
In total, this project aims to develop a robust deep learning model for autonomous driving 
perception systems that will be able to give proper perception results even in corrupted 
conditions, when malicious sensor data (i.e., adversarial examples) is injected. Given the 
foreseeable future in which autonomous driving technology is expected to enter the market, the 
proposed research addresses the problem of improving the resilience of autonomous vehicles 
to the possibility of cyber-attacks aimed at impairing or affecting the perception results by fooling 
deep learning models with adversarial examples. 
 
The main results of this project include: 
 

• A bottom-up discriminative-generative ensemble model for image classification is 
developed, which leverages both generative and discriminative models with built-in 
adversarial causal relationships. A causal graph with latent variables is created to build 
Bayes-based generative classifier. The inputs consist of both original inputs and 
discriminative features.  

• The proposed ensemble model not only shows better classification accuracy against 
adversarial examples but also shows better model causality when using adversarial 
examples as counterfactual metrics, compared with baseline models.  
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CHAPTER 1 

Introduction  
 

In recent years, deep learning (DL) has made significant progress in many fields like 
robotics, autonomous driving, and human-machine interaction [1], [2], [3] for the use of 
environment recognition or perception. For conventional machine learning (ML) algorithms, it is 
challenging to extract well-represented features due to limitations, such as the curse of 
dimensionality. DL can deal with massive high-dimensional data and solve the problem of 
feature representation through deep neural networks (DNN) by building multiple simple features 
(i.e., neurons) to learn a sophisticated concept. DNN, especially convolutional neural network 
(CNN) based models, are widely used for the task of sensing the surrounding environment. 
However, recent studies find that DNN is vulnerable to adversarial attacks through well-
designed input samples [4], [5], [6]. Designing an input in a specific way to get the wrong 
classification result from the model is called an adversarial attack, and these kinds of modified 
and misclassified inputs are called adversarial examples [4]. An adversarial example is usually 
modified slightly so humans don’t misclassify it. It's challenging for humans to recognize 
adversarial examples, thus, the adversarial attack is a non-trivial threat to many DNN-based 
applications. DNN-based environment perception, as the first stage in the robot navigation 
pipeline, should be accurate and robust enough against external perturbations and noises. A 
misclassification of robots' or vehicles' surrounding environment can compromise their decision-
making, traveling trajectories, and, therefore, functional safety and even passenger safety in 
autonomous vehicles. To secure DL in safety-crucial applications, DL models must be robust 
and built to be inherently resistant to adversarial attacks. More specifically, the model 
robustness in this project is defined as the ability to maintain good accuracy against adversarial 
perturbations.  

 

 
Figure 1: Projected Gradient Decent (PGD) attack examples on CIFAR-100 dataset. From top to bottom 
are 5 classes, including bicycle, bus, pickup truck, tractor, and train. 𝜖 (eps) controls the perturbation size. 

 
In this project, we develop a generalized deep neural network architecture for image 
classification, an ensemble network consisting of discriminative features and generative models. 
Discriminative classifiers achieve higher accuracy on large-scale image classification datasets 
(e.g., ImageNet), while generative classifiers can be more robust to adversarial examples [7]. 
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Our research finds that a combination of the two models can leverage their respective 
advantages to build a robust classifier with good accuracy. A causal graph-guided deep latent 
model is adapted in the generative classifier, which can model the distribution of adversarial 
perturbations. More specifically, adversarial perturbation is modeled as one of the latent 
variables, and the classification probability is estimated using Bayes' rule in the generative 
classifier. 
 
In this project, the main contributions are summarized as 

• We introduce a bottom-up discriminative-generative ensemble model for image 
classification, which leverages both generative and discriminative models with built-in 
adversarial causal relationships. 

• We show that the ensemble network can be resistant to different types of adversarial 
attacks with different strengths, and the attack success rates decrease significantly 
compared with the baseline model. The accuracy of the clean dataset is not affected 
much. 

• Using adversarial examples as counterfactual metrics shows that the proposed 
ensemble model has better model causality than the baseline models. 

 
The remainder of this report is organized as follows. Chapter 2 provides a literature review of 
the adversarial attacks and defenses in autonomous vehicles. Chapter 3 discussed the 
proposed neural network robustification approach with generative models and causal graphs. 
Chapter 4 presents the experiments on CIFAR-10 and CIFAR-100 dataset. Lastly, Chapter 5 
provides concluding remarks and future works. 
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CHAPTER 2 

Literature Review 
 
2.1 Adversarial Attacks on Images 

There are several different types of algorithms for generating adversarial images. Szegedy et al. 
first used an L-BFGS method to solve the generation of adversarial image examples [4]. 
However, L-BFGS attack is time-consuming due to the use of an expensive linear search 
method. Goodfellow et al. proposed a fast approach called fast gradient sign method (FGSM) to 
generate adversarial examples [5]. However, FGSM is designed primarily to be fast instead of 
producing very close adversarial examples. Moosavidezfooli et al. proposed an efficient method 
called Deepfool that produces closer adversarial examples than the L-BFGS approach [8]. 
Carlini and Wagner also proposed a much more effective attack compared with FGSM attack 
[9]. The proposed attack is successful on defensive distilled neural networks. In addition, 
projected gradient descent (PGD) attack is another strong iterative adversarial attack which is a 
multi-step variant of FGSM [10]. Yuan et al. [11] suggested an adaptive adversarial attack that 
may provide a 3-6-fold speedup compared to contemporary iterative methods. Jia et al. [12] 
examined adversarial attacks against object detection and moving object tracking systems by 
attacking just three frames on autonomous cars’ onboard sensors. 
 
It has been discovered that popular scene segmentation algorithms based on deep neural 
networks (DNN) are vulnerable to adversarial attacks. Specifically, [13] demonstrates an 
iterative projected gradient-based attack approach that may mislead multiple DNN-based 
segmentation models with a much greater attacking success rate and significantly fewer 
adversarial perturbations. [14] create a stereo-regularizer to train the model on the implicit 
connection between images and define the loss function’s local smoothness. 
 
2.2 Defenses for Adversarial Attacks on Images 

Adversarial detecting is a typical reactive approach to detect adversarial examples. Roth et al. 
proposed a statistical test for detecting adversarial examples [15]. Statistics leverage log-odds 
and exploit certain anomalies that adversarial attacks introduce. Metzen et al. empirically 
showed that adversarial examples could be detected surprisingly well using a detector 
subnetwork attached to the main classification network [16].  
 
On the other hand, adversarial training is one of the few proactive techniques which can defeat 
strong attacks through regularizing deep models by encouraging the neural network to classify 
both clean examples and perturbed ones correctly [5]. The idea is to include adversarial 
examples in the training stage to make the network more robust. With adversarial training, the 
error rate fell to 17.9% from 89.4% on adversarial examples based on FGSM on MNIST [5]. 
Kurakin et al. studied how to increase robustness to adversarial examples of large models 
(Inception v3) trained on a large dataset (ImageNet) [17]. However, it has also been shown that 
injecting adversarial examples into the training set would decrease the accuracy of the clean 
dataset, and adversarial training is expensive in training time due to the construction of 
sophisticated adversarial examples. Shafahi et al. presented a “free” adversarial training 
algorithm which can eliminate the overhead cost of generating adversarial examples by 
recycling the gradient information computed when updating model parameters [18].  
 
[19] conducted a detailed analysis of the comparative robustness of RGB images and LiDAR 
channel-based deep fusion systems. Some of the findings are that the sensor fusion models are 
more resistant to adversarial single-channel perturbation attacks than single-channel models 
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before and after adversarial training, highlighting the importance of fusion in enhancing 
robustness. Nonetheless, adversarial training with perturbations to the whole input often overfits 
the attack and fares worse than fusion models before adversarial training. 
 
Apart from these techniques, recently, explainable artificial intelligence (XAI) also draws a lot of 
interest in the research community, and it also provides an emerging area which is defeating 
adversarial attacks using model explainability. It has been shown that better adversarial 
robustness can be achieved by building a more explainable model [27]. Ross et al. proposed a 
new training method with input gradient regularization to improve adversarial robustness [28]. In 
addition to these feature relevance techniques in XAI, some visualization explanation 
techniques can also be used as countermeasures against adversarial attacks. Saliency map, as 
a widely used technique to visualize features, including Smooth-Grad, Grad-CAM, Grad-
CAM++, etc., has been adopted to either detect adversarial examples as post-hoc explanations 
or improve adversarial robustness as regularization terms [29-32].  
 
The limitations of the existing countermeasures can be summarized as follows: first, current 
defense mechanisms focusing on detecting adversarial examples do not consider the 
computational burden and have not been tested in real-time scenarios [33]. Therefore, they may 
not be applicable in autonomous driving scenarios. Even those who have been already tested in 
autonomous driving models have either a low success rate or a high false-positive rate [34]. 
Second, current robustifying approaches like adversarial training don’t build model robustness 
intrinsically and cannot solve the basis problem of deep learning models which is lacking 
interpretability. However, even XAI-based approaches with regularization may harm the model 
performance on clean dataset (i.e., similar to adversarial training). Therefore, in this project, we 
aim to robustify a neural network model by introducing a new architecture to build a more 
adversarially robust and more interpretable neural network model, without compromising the 
performance on clean data. 
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CHAPTER 3 

Research Approach 
 
Deep discriminative classifiers achieve great success in many classification tasks by modeling 
decision boundaries between different classes. It learns what features in the input contribute 
most to distinguishing between the various classes. In terms of defenses against adversarial 
examples for deep discriminative classifiers, adversarial training as one of the strongest defense 
mechanisms has shown improvements in the robustness of deep discriminative models by 
involving adversarial examples in the model training [5]. However, as many different types of 
adversarial examples are shown in Chapter 2, it is unrealistic to involve all types of adversarial 
examples in the training phase due to the high training time cost. In addition, the adversarially 
trained model is only robust against the types of adversarial examples used in training, which 
means the transferability of adversarial training cannot be guaranteed. Therefore, the goal of the 
proposed approach is to avoid using any specific types of adversarial examples in training; 
instead, to model the formation of universal adversarial perturbations by using the generative 
model with latent variables. 
 
Different from discriminative classifiers, generative classifiers try to model the actual distribution 
of each class, which means it models how one specific class generates the input data. 
Therefore, a generative model could be more robust to adversarial examples as it knows what 
adversarial inputs look like. On the other hand, the discriminative model is vulnerable to 
adversarial examples because adversarial examples are designed against discriminative 
models to set outliers for decision boundaries to confuse the classifier. This gives the underlying 
theoretical support that generative classifiers could possibly be used to defeat adversarial 
examples, as it's more challenging to shift feature distribution than create outliers. Zhang et al. 
improve the generative classifier robustness via modeling the adversarial perturbation from a 
causal view, but the results on MNIST and CIFAR-binary require test time fine-tuning [20]. 
Besides, [20] couldn't obtain results on the full image dataset as they report VAE-based 
generative classifiers are less satisfactory for classifying clean CIFAR-10 images (< 50% clean 
test accuracy). 
 
In our research, a bottom-up discriminative-generative ensemble model is developed to 
combine the discriminative features with a generative classifier. Discriminative features are used 
to ensure high classification accuracy, while the generative model is used to model the 
distribution of adversarial inputs to provide adversarial robustness. We further expand the work 
in [20] and make our technique succeed on full CIFAR-10 and CIFAR-100 datasets to show that 
the proposed model can be used towards more complex image classification tasks, which can 
contribute potentially to the autonomous vehicle and robot's perception system. 
 
3.1 Overall Ensemble Model 

The overall ensemble model architecture is shown in Figure 2. The architecture contains a 
bottom-level pre-trained discriminative feature extraction network and a top-level generative 
classification network. As we intend to generalize the proposed ensemble model for various 
discriminative classifiers or relative models, the bottom-level discriminative network can be any 
pre-trained CNN model (e.g., VGG, ResNet, etc.) depending on the actual classification task or 
users' preference. The pre-trained layers will be kept frozen during the model training process. 
 
As shown in Figure 2, the top-level generative classifier takes both features extracted from the 
bottom-level pre-trained CNN and the original image as inputs. We consider fusing both the 
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original image and features because of the characteristic of a generative model to regenerate its 
inputs. The generative classifier should be trained to learn distributions not only from features 
but also from original data, which contributes to modeling adversarial images, not just 
adversarial features. The feature extractor (i.e., blue in Figure 2) is pre-trained for a generalized 
solution, and the design of the generative classifier (i.e., green in Figure 2) will be presented in 
3.2 and 3.3. 

 
Figure 2: Bottom-up discriminative generative architecture. The ensemble model consists of two parts 
which are a standard features extractor and a generative classifier. 

 

3.2 Causal Graph with Latent Variables 

To build the top-level generative classifier with latent variables, a causal graph should be 
created first to model the relationship between inputs, outputs, and latent variables, as shown in 
Figure 3. By leveraging causal reasoning, DNNs can be trained to learn the causal relations 
rather than just statistical relations between inputs and outputs to avoid overfitting and improve 
robustness. In this project, we define the inputs to the generative classifier as 𝑋1 and 𝑋2, as 

there are two types of inputs. 𝑋1 represents the original image while 𝑋2 represents the features 
extracted from the pre-trained CNN. Given an input image, multiple factors or causes impact the 
formation of the image data. Among these factors, 𝑌 is the predicted label containing the class 

of the object, 𝑀 is a set of variables that can be changed or modified artificially (i.e., in our case, 

the adversarial perturbations can be applied or injected directly and artificially), and 𝑍 
represents all the other factors that cannot be changed like camera positions and object 
materials which would affect the reflection of light. 
 
Following this causal graph, we consider adversarial perturbations 𝑀 as a specific type of noise 

on the input 𝑋1 and 𝑋2, which could lead to misclassifications of neural networks. In order to fool 

a DNN, the adversarial perturbations 𝑀 are generated given the target labels (i.e., misclassified 
as an assigned target label), or true labels (i.e., misclassified as any labels except true label), 
the input data (𝑋1, 𝑋2) and network details θ (i.e., in case of white-box attacks). On the other 
hand, as adversarial perturbations are generated to fool the network with incorrect labels, label 
𝑌 is affected by adversarial perturbations 𝑀, input data (𝑋1, 𝑋2) and network details 𝜃. Then for 
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the input data generation, adversarial inputs consist of adversarial perturbations 𝑀 and original 

inputs (𝑋1, 𝑋2) which are affected by labels 𝑌 and other factors 𝑍. To simplify the problem, we 
don't consider the case that other factors can change true labels. 
 
The causal model representing the forming mechanism of input data can then be formulated as 
follows: 

𝑋1
𝑎𝑑𝑣,  𝑋2

𝑎𝑑𝑣  =  𝑃1(𝑀, 𝑋1, 𝑌, 𝑍),  𝑃2(𝑀, 𝑋2, 𝑌, 𝑍) (1) 

 
The generative model should be able to learn the causal relationship from the input data during 
the training phase and make the correct classifications based on its reasoning from these 
factors during the inference phase. 

 
Figure 3: Bottom-up discriminative generative architecture. The ensemble model consists of two parts 
which are a standard features extractor and a generative classifier. 

 
3.3 VAE-based Generative Classifier 

After identifying the causal relations between inputs, outputs, and latent variables, we could 
leverage (1) and Bayes' rule to build the generative classifier. Given 𝑌 is the target label and 𝑋 

is the input, Bayes' rule can be applied to estimate the probability of 𝑦 given 𝑥 by 𝑝(𝑦|𝑥) =
𝑝(𝑦)𝑝(𝑥|𝑦)/𝑝(𝑥). In this project, the generative classifier predicts the label 𝑦 of an input 𝑥 as: 
 

𝑝(𝑦|𝑥) =
𝑝(𝑥|𝑦)𝑝(𝑦)

𝑝(𝑥)
= 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑐=1

𝐶 [𝑙𝑜𝑔 𝑝 (𝑥, 𝑦𝑐)] (2) 

 

where 𝐶 is the total number of classes and likelihood function 𝑙𝑜𝑔 𝑝 (𝑥, 𝑦𝑐) is maximized during 

the training. During the prediction, the log-likelihood for each 𝑦 = 𝑐  is computed for the 

distribution, then applied with softmax for the final prediction. After including latent variable 𝑚 

and 𝑧, (2) can be reformulated as: 
 

𝑝(𝑦|𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑐=1
𝐶 [𝑙𝑜𝑔 ∫ 𝑝(𝑥, 𝑦𝑐 , 𝑧, 𝑚)  𝑑𝑚 𝑑𝑧] (3) 

 

In this project, as inputs 𝑋 contains both 𝑥1 and 𝑥2, the probability 𝑝(𝑥, 𝑦𝑐 , 𝑧, 𝑚) can then be 

reformulated with latent variables by 
 

𝑝(𝑥1, 𝑥2, 𝑦, 𝑧, 𝑚) = 𝑝(𝑥1, 𝑥2|𝑦, 𝑧, 𝑚)𝑝(𝑦, 𝑧, 𝑚) (4) 
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From the generative modeling process in Figure 3 (i.e., solid lines), we can then represent 

𝑝(𝑦, 𝑧, 𝑚) as: 

 

𝑝(𝑦, 𝑧, 𝑚) = 𝑝(𝑚)𝑝(𝑧)𝑝(𝑦) (5) 

 

After substituting 𝑝(𝑥, 𝑦𝑐 , 𝑧, 𝑚)  in (3) with (4) and (5), the prediction probability (3) can be 

reformulated as: 
 

𝑝(𝑦|𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑐=1
𝐶 [∫ 𝑝(𝑥1, 𝑥2|𝑦, 𝑧, 𝑚)𝑝(𝑚)𝑝(𝑧)𝑝(𝑦)  𝑑𝑚  𝑑𝑧] (6) 

 
For the intractability of the marginal log-likelihood due to the intractable true posterior 𝑝(𝑧| ⋅) and 

𝑝(𝑚| ⋅) for latent variables with conditional distributions, an approximate distribution [21] 

𝑞(𝑧, 𝑚; 𝜆) could be used to approximate the true posterior with variational parameters 𝜆. Then 
the model training of maximizing log-likelihood function in (6) is equivalent to minimizing the 
divergence between the variational distribution and true distribution. However, this divergence is 
almost impossible to minimize to zero because the variational distribution is usually not 
sufficient enough to catch the complexity of the true posterior due to insufficient parameters. To 
solve the issue, Evidence Lower Bound (ELBO) can be adapted here, which is a lower bound 
on the log marginal probability of the data. [22] showed that minimizing the divergence is 
equivalent to maximizing ELBO. ELBO of the log-likelihood in (6) can be derived using 
variational posterior 𝑞(𝑧, 𝑚; 𝜆) and Jensen’s inequality as follows: 
 

𝑙𝑜𝑔 𝑝 (𝑥, 𝑦) = 𝑙𝑜𝑔 ∫ 𝑝(𝑥1, 𝑥2|𝑦, 𝑧, 𝑚)𝑝(𝑚)𝑝(𝑧)𝑝(𝑦)  𝑑𝑚 𝑑𝑧

= 𝑙𝑜𝑔 ∫ 𝑝(𝑥1, 𝑥2|𝑦, 𝑧, 𝑚)𝑝(𝑚)𝑝(𝑧)𝑝(𝑦)
𝑞(𝑧, 𝑚; 𝜆)

𝑞(𝑧, 𝑚; 𝜆)
 𝑑𝑚 𝑑𝑧

= 𝑙𝑜𝑔 𝐸𝑞(𝑧,𝑚;𝜆) [
𝑝(𝑥1, 𝑥2|𝑦, 𝑧, 𝑚)𝑝(𝑚)𝑝(𝑧)𝑝(𝑦)

𝑞(𝑧, 𝑚; 𝜆)
]

≥ 𝐸𝑞(𝑧,𝑚;𝜆) [𝑙𝑜𝑔
𝑝(𝑥1, 𝑥2|𝑦, 𝑧, 𝑚)𝑝(𝑚)𝑝(𝑧)𝑝(𝑦)

𝑞(𝑧, 𝑚; 𝜆)
] 

 
Now we can design the inference network (i.e., variational posterior) according to (7) and the 
causal graph (Figure 3) as follows: 

 
𝑞(𝑧, 𝑚; 𝜆) = 𝑞𝛿(𝑧, 𝑚|𝑥1, 𝑥2, 𝑦) = 𝑞𝛿1

(𝑧|𝑥1, 𝑥2, 𝑦, 𝑚)𝑞𝛿2
(𝑚|𝑥1, 𝑥2, 𝑦) (8) 

 
Here the variational parameters are 𝛿 = {𝛿1, 𝛿2}, where 𝛿1  is parameter for encoder network 

𝑞𝛿1
(𝑧|𝑥1, 𝑥2, 𝑦, 𝑚), and 𝛿2 is parameter for encoder network 𝑞𝛿2

(𝑚|𝑥1, 𝑥2, 𝑦). Similar variational 

parameters are defined for the decoder network: 
 

𝑝𝜃(𝑥1, 𝑥2, 𝑦, 𝑧, 𝑚) = 𝑝𝜃1(𝑥1, 𝑥2|𝑦, 𝑧, 𝑚)𝑝(𝑚)𝑝(𝑧)𝑝(𝑦) (9) 

 
where the variational parameters are 𝜃 = {𝜃1}  and 𝜃1  is parameter for decoder network 

𝑝𝜃1
(𝑥1, 𝑥2|𝑦, 𝑧, 𝑚). 
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Figure 4 shows the Variational auto-encoder (VAE)-based architecture for both the decoder and 
encoder network containing those separate neural nets. As both original images and object 

features are used in the causal graph, a CNN inside encoder processes the original image 𝑥1 to 

align the data type with object features for better fusion results, as shown in the encoder 
network. And a deconvolutional neural network inside the decoder is used to process the object 

features to reconstruct the original image 𝑥1 as shown in the decoder network. The encoder 

network is used to compute 𝑞𝛿(𝑧, 𝑚|𝑥1, 𝑥2, 𝑦), where the parameters of CNN is included in 𝑞𝛿2
. 

The decoder network is used to compute 𝑝𝜃(𝑥1, 𝑥2, 𝑦, 𝑧, 𝑚), where the parameters of de-CNN is 

included in 𝑝𝜃1
. 

 
After combining (7), (8) and (9), the training of 𝑝𝜃 and 𝑞𝛿 network on a dataset 𝑆 with 𝑁 samples 
can be done by maximizing the lower-bound function: 
 

𝐸𝑆 = ∑ 𝐸𝑞𝛿
[𝑙𝑜𝑔

𝑝(𝑧)𝑝(𝑦𝑐)𝑝𝜃1(𝑥1, 𝑥2|𝑦, 𝑧, 𝑚)

𝑞𝛿1(𝑧|𝑥1, 𝑥2, 𝑦, 𝑚)
]

𝑁

𝑛=1

(10) 

 
In order to avoid the enlarged dataset and time-consuming issue in adversarial training, only 
clean data is used here for the model training, which means 𝑚 is set to 0 during the training 

time. The prior distribution of 𝑝(𝑧) is set with 𝜇 =  0 and 𝜎 =  0. The prior distribution of 𝑝(𝑦) is 
set according to the total classes in the dataset (e.g., 0.1 for CIFAR-10 and 0.01 for CIFAR-
100). During the model inference period, 𝑚𝑡  is not set to 0 but instead sampled from 

𝑞𝛿2
(𝑚|𝑥1, 𝑥2, 𝑦𝑐) and 𝑧𝑡  is sampled from 𝑞𝛿1

(𝑧|𝑥1, 𝑥2, 𝑦𝑐 , 𝑚𝑡). The prediction probability can be 

obtained by: 
 

𝑝(𝑦|𝑥) =
𝑝(𝑥|𝑦)𝑝(𝑦)

𝑝(𝑥)
≃ 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑐=1

𝐶 [𝑙𝑜𝑔 ∑
𝑝(𝑧)𝑝(𝑦𝑐)𝑝𝜃1(𝑥1, 𝑥2|𝑦𝑐 , 𝑧𝑡 , 𝑚𝑡)

𝑞𝛿1(𝑧𝑡|𝑥1, 𝑥2, 𝑦𝑐 , 𝑚𝑡)

𝐾

𝑘=1

] (11) 

 
Where 𝐶 is the number of classes, and 𝐾 is the number of samples. 
 

 
Figure 4: Generative model. Each individual neural net in the encoder and decoder estimates the 
independent probabilities for 𝑞 and 𝑝, respectively. 

 
The overall classifier training process can be regarded as an adjusted transfer learning process 
as we leverage the transfer learning concept in our ensemble model. The transfer learning 
technique keeps the feature extraction layers (i.e., convolutional neural networks (CNN)) but 
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modifies classification layers (i.e., fully connected neural networks (FCNN)) according to the 
actual task. Unlike traditional transfer learning, which freezes convolutional layers to keep the 
extracted features and then adds new fully connected layers for classification, our proposed 
ensemble model freezes the convolutional layers for features, but we replace the FCNN-based 
discriminative classifier with the above-developed Bayes-based generative classifier.  
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CHAPTER 4 

Experiment Setup and Results 
 
4.1 Setup 

Datasets: CIFAR-10 and CIFAR-100 [23] are used in this work for preliminary results as these 
two datasets are widely used in terms of image classification, and they are lightweight to 
validate the model before testing on more sophisticated datasets. CIFAR-10 contains 10 
classes with 6000 images each, divided into 5000 training and 1000 testing images per class. 
CIFAR-100 contains 100 classes with 600 images each, divided into 500 training and 100 
testing images per class. Each image in CIFAR-10 and CIFAR-100 is 32x32x3. 
Pre-trained Models: A state-of-the-art discriminative image classifier VGG-16 [24] and a 
generative classifier GBZCONV9 [7] are considered in this work. VGG-16 is a standard CNN 
with 16 convolutional and dense layers, while GBZ-CONV9 is a deep generative classifier with 
convolutional features as input. Those two models were selected because VGG-16 is widely 
used in a variety of different image classification applications and is one of the discriminative 
classifiers with the best accuracy. GBZ-CONV9, on the other hand, has the best performance in 
terms of generative classifiers against adversarial examples, which is proposed in the only 
paper in the field of robust generative image classifier on full CIFAR-10 dataset. Although there 
are several different generative models with different architectures and parameters in [7], we 
selected GBZ-CONV9 here as it achieves the best accuracy among all the models. 

VAE Architecture: The FCN estimating 𝑞𝛿1
(𝑧|𝑥1, 𝑥2, 𝑦, 𝑚) and 𝑞𝛿2

(𝑚|𝑥1, 𝑥2, 𝑦) both consist of 

2 hidden fullyconnected layers, each with 500 neurons and ReLU activation. The CNN to 
process X1 has 3 hidden convolutional layers with filter size 5x5 and [64, 128, 256] channels. 

The FCN estimating 𝑝𝜃1
(𝑥1, 𝑥2|𝑦, 𝑧, 𝑚) consists of 2 hidden fully-connected layers, each with 

500 neurons and ReLU activation. The deconvolutional CNN to reconstruct X1 has 3 hidden 
convolutional layers with filter size 5x5 and [128, 64, 3] channels. Training optimizer is set to 
Adam with learning rate 5e−5, and batch size is set to 100. The total iterations are 300. 
Attacks: Two types of adversarial attacks are considered in this project, which are fast gradient 
sign method (FGSM) [5] and projected gradient descent (PGD) [10]. FGSM is fast enough for 
several real-time applications, while PGD is an iterative attack and one of the strongest. FGSM 
attack can be formulated as: 
 

𝑎𝑑𝑣𝑥 = 𝑥 + 𝜖 ∗ 𝑠𝑖𝑔𝑛(𝛻𝑥𝐽(𝜃, 𝑥, 𝑦)) (12) 

 

where 𝑎𝑑𝑣𝑥  is the generated adversarial image, 𝑥 is the original image, 𝜖 is the multiplier to 

ensure the perturbations are small, and 𝐽(𝜃, 𝑥, 𝑦)  is a loss function concerning the neural 

network parameters 𝜃, input 𝑥 and output labels 𝑦. 

PGD attack is an iterative variant of FGSM attack and can be formulated as: 
 

𝑎𝑑𝑣𝑥
𝑡+1 = 𝛱𝑥+𝑆 (𝑎𝑑𝑣𝑥

𝑡 + 𝜖 ∗ 𝑠𝑖𝑔𝑛(𝛻𝑥𝐽(𝜃, 𝑥, 𝑦))) (13) 

 

where 𝛱𝑥+𝑆 projects perturbations into set 𝑆 which can be 𝑙2 or 𝑙𝑖𝑛𝑓, etc. 

 

We evaluated ϵ (i.e., eps) from 0 to 0.2 (eps = 0 indicates no attacks) as perturbations with eps 

larger than 0.2 would be too large and obvious (see Figure 1). 
Causality evaluation: We leverage counterfactual explanations to evaluate neural network 
model causality according to [25]. Proximity and speed are selected as two counterfactual 
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properties. In this work, we regard adversarial examples as counterfactual and evaluate the 
minimal perturbation size as well as minimal attack iterations (i.e., number of gradient updates) 
on the proposed ensemble model and baseline models. 
 
In addition, Remove and Retrain (ROAR) and Keep and Retrain (KAR) [26] are two attribution 
method evaluation metrics used in this work to measure the interpretability of deep neural 
networks. The idea is to measure the accuracy change if some features were occluded based 
on the ordering assigned by the attribution method (gradient-based saliency map). For ROAR, 
the most important image pixels are replaced with a constant value. For KAR, instead, the least 
important pixels are replaced with a constant value. Then the network is retrained on the 
modified dataset, and the change in testing accuracy is recorded. 
 
4.2 Comparison of Accuracy 

As shown in Figure 5(a) and 5(d), VGG16-CNN is the least robust network on CIFAR-10, and 
even a small eps can reduce the accuracy to 20% (i.e., eps 0.05 for FGSM and 0.01 for PGD), 
which makes the classifier misclassify significantly. GBZ-CONV9 can increase the accuracy but 
is still not good enough (lower than 80% for nearly all the cases). The proposed discriminative-
generative network (DGN) can significantly improve accuracy compared with the baseline 
VGG16-CNN network and GBZ-CONV9. The accuracy is around 90% for FGSM attacks, which 
makes the FGSM attack ineffective. For PGD attacks, it can achieve 80% accuracy for eps 0.05 
and 50% for eps 0.1, which is a significant improvement. The difference in performance for 
FGSM and PGD is due to the strength of the attack, as FGSM is a quick one-step attack while 
PGD is an iterative and stronger attack. We can also see that the ensemble model doesn’t 
make the clean dataset accuracy (i.e., eps = 0) decrease and even increase it a little. We 
assume this is because the ensemble DGN has better causality and interpretability (shown in 
Section IV-C), which could improve the overall deep neural network performance.  
 

 
Figure 5: Classification accuracy for the adversarial examples generated by FGSM and PGD on CIFAR-
10 dataset. eps control the perturbation size. The proposed ensemble could improve the accuracy against 
adversarial examples and even on the clean dataset. 
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Figure 6: Classification accuracy for the adversarial examples generated by FGSM and PGD on CIFAR-
100 dataset. eps control the perturbation size. The proposed ensemble could improve the accuracy 
against adversarial examples. 

 
As shown in Figure 6(a) and 6(d), for CIFAR-100, VGG16-CNN is still the least robust network. 
And the proposed DGN ensemble can still outperform the other two baseline models even on 
this much larger dataset. We observe that PGD attacks against VGG16 are less effective with 
small eps on CIFAR-100 than CIFAR-10, and we assume this is due to the enlarged size and 
increased classes of the dataset.  
 
It has been shown that it takes 3−30 times longer to form a robust network with adversarial 
training than forming a nonrobust equivalent [18]. In this project, although the training time is not 
recorded, we suppose it’s quicker to train this model as the dataset is not enlarged by 
adversarial examples. 
 
4.3 Evaluation of Causality 

As in Section IV-A, minimal perturbation size is calculated by measuring the minimal 
perturbation needed to be added to the original images. A more robust network tends to need 
stronger adversarial attacks with larger perturbations to reduce the classification accuracy 
successfully. As shown in Figure 5(b) and 5(e), for FGSM attack, the VGG16- CNN is the 
easiest network to attack, which needs the slightest perturbation, and the proposed DGN and 
the GBZCONV9 require larger perturbation for the attack to be effective. For PGD attacks, there 
are no apparent differences in the average perturbation size between the models. We suppose 
this is because the perturbation for iterative attacks can accumulate after several steps, and the 
differences on different networks can be minor if a fixed number of iterations are used (T = 30 
iterations in this case). A higher eps leads to a larger perturbation size as the eps represents the 
attack step size (i.e., final perturbation is the product of original perturbation and attack step 
size). Regarding the results on CIFAR-100 dataset, as shown in Figure 6(b) and 6(e), the same 
trends show for FGSM attack, but no apparent differences can be reported between the 
proposed DGN and GBZ-CONV9 for small eps. Differences among the three models are even 
more minor for PGD attacks. 
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Figure 7: Average minimal perturbation size for the adversarial examples generated by FGSM and PGD 
on CIFAR-10 dataset. A larger average minimal perturbation size indicates a more robust model. The 
proposed DGN ensemble shows better results on FGSM attacks while limited performance on PGD 
attacks. 

 

 
Figure 8: Average minimal perturbation size for the adversarial examples generated by FGSM and PGD 
on CIFAR-100 dataset. The ensemble shows a larger average minimal perturbation size on FGSM 
attacks while no improvement on PGD attacks compared with VGG16. 

 
Minimal iterations are the least number of iterations needed while running the attack-generating 
algorithm. More iterations usually mean larger perturbation; thus, the network can be identified 
as more robust, and only stronger attacks can successfully attack it. As shown in Figure 5(c) 
and 6(c), for FGSM attacks, the VGG16-CNN only requires one iteration, which means even a 
one-step FGSM attack is enough to compromise it. GBZ-CONV9 performs a little better that the 
max minimal iterations are 5 on CIFAR-10 dataset but can also be attacked by a one-step 
FGSM attack on CIFAR-100 dataset. For the proposed DGN, the minimal iterations are always 
30 on both CIFAR-10 and CIFAR-100 datasets, the maximum iteration number we set in the 
experiment. We stop the iteration at 30 even if the accuracy is not reduced to the desired values 
(40% in this experiment). At this point, the DGN requires more than 30 iterations for the FGSM 
attack to be effective. For PGD attacks, as shown in Figure 5(f) and 6(f), the proposed DGN 
needs more iterations for small eps values than VGG16-CNN and GBZCON9. However, for 
large eps values (e.g., more than 0.1), the proposed DGN has limited performance. 
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Figure 9: Minimal iterations needed for the adversarial examples generated by FGSM and PGD on 
CIFAR-10 dataset. Larger minimal iterations indicate a more robust model. The proposed DGN ensemble 
significantly outperforms baselines on FGSM and PGD attacks with small eps. 
 

 
Figure 10: Minimal iterations needed for the adversarial examples generated by FGSM and PGD on 
CIFAR-100 dataset. Larger minimal iterations indicate a more robust model. The proposed DGN 
ensemble significantly outperforms baselines on FGSM attacks regardless of eps and PGD attacks with 
small eps. 

 
Table I shows the results on ROAR and KAR. The higher the ROAR, the better the 
interpretability; the lower the KAR, the better the interpretability. A high ROAR means removing 
those important features can reduce the accuracy a lot, and a low KAR means removing those 
unimportant features cannot affect the accuracy a lot, which both indicates the network can be 
interpreted by the attribution method properly. As shown in Table I, the proposed DGN has the 
highest ROAR and the least KAR, which shows the ensemble model can be better interpreted 
with the same technique, indicating better interpretability. 
 

Table 1: ROAR/KAR on CIFAR-10. Large ROAR and small KAR indicate better model interpretability, 
which is both achieved by the proposed ensemble model. 

 

Network ROAR KAR 

VGG16-CNN [24] 0.006 0.012 

GBZ-CONV9 [7] 0.0005 0.0063 
Proposed DGN 0.0214 0.0013 
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CHAPTER 5 

Conclusions 
 
This project proposes a deep ensemble model for image classification with the fusion of 
discriminative features and generative models. A causal graph is designed while constructing 
the deep Bayes classifier to model the adversarial perturbations. As the deep Bayes classifier 
can't achieve the state-of-the-art accuracy of discriminative classifiers, we fuse the object 
features extracted from pre-trained CNNs with original images as final inputs. Benefiting from 
this structure, the proposed method is generic and can be applied to various discriminative 
classifiers. The generative model can be used as an auxiliary network to be built on top of any 
pre-trained CNNs. Experimental results show that the proposed ensemble model achieves 
reduced accuracy loss against adversarial examples and gains better overall model causality 
and interpretability. By integrating this model into the autonomous driving perception modules, 
autonomous vehicles could be more robust against adversarial attacks aiming at causing 
misclassifications. Therefore, the technique can improve vehicle security and safety by building 
a resilient perception module. Future research directions would be applying the proposed robust 
model to object detectors and commercialized autonomous driving stacks to validate the results 
on more sophisticated autonomous driving models. Testing the model against physical 
adversarial attacks could also be further explored. 
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